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PREFACE

This research was conducted by the National Bureau of Standards (NBS),
Heat Division, basically under sponsorship of the Arnold Engineering Develop-
ment Center (AEDC), Air Force Systems Command (AFSC), under Air Force
Contract F40600-72-M-0002, The AEDC project monitor for this work was
Elton R. Thompson, AEDC/DYR. The work was also supported in part by
the Atomic Energy Commission under Interagency Agreement AT(49-16)3003,
Modification No. 2. This work covers essentially the period July 1974 to
June 1975. Principal investigators and authors of this report were Max Klein
and Lester Haar of NBS.
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I. INTIRODUCTION

Aerodynamic design requirements demand the ability to calculate tables of
thermodynamic properties and equilibrium compositions of air for thermodynamic
states far from normal laboratory conditions, Earlier design requirements led
to the production of tables at wvery high temperatures ranging in demsity from
quite low densities to intermediate densities, The NBS tables1 {(which were
published under AEDC support) are examples of a response to this earlier need.
These tables covered the temperature range 1500 K £ T £ 15,000 K and the
dengity range 10-6 £ pIpID £ 102, where Po ia the density at the standard condi-
tions of T = 273.15 K and P = 1 bar. More recently, there have been indica-
l:ions2 of needs for tables covering considerably higher densities at these

elevated temperatures.

In thie project, we were requested to attempt to develop methods for the
calculation of the properties of air for densities up to 1000 times normal gea
level density. If successful, these tables, taken together with the NBS tables
already published, would result in tables being available for the enormous
density range 10‘-6 £ nfpo £ 103 (i.e. nine orders of magnitude) at temperatures
well outside those associated with laboratory experiments. Such tables would
then represent an extrapolation from ordinary conditions of over two orders of
magnitude in temperature and at the same. time, an extrapolation of at least one
arder of magnitude In demsity from the earlier tables,

Combined extrapolations of such magnitudes in temperature and density pose
very difficult problems. They must of necessity be based on fundamental
properties of the systems under study, properties which might not vary over the
range of the extrapclation. These pfoperties must also be used in a framework
of fundamental theoretical methods valid over the entire range of temperatures

and densities of interest, 1In additfon, specific numerical methods must be

developed and computer programs produced for tranaforming these numerical methods

into the actual calculation of tables, These numerical problems include the
often difficult task of producing methods for the sclution of sets of non-linear
algebraic equations.3 with such methods being required to produce solutions for

a wide variety of values for the unknown parameters.
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It should be obvious that, because of the extent of the extrapolations
required, empirical correlation methods are not appropriate here,
Such engineering methods involve the least squares fitting of measured data to
equations containing arbitrary parameters. Such parameters generally do not

have physical significance and can therefore only be used with extreme caution
if at all in extrapolations beyond the range of experimental data on which their

values are based. In fact, using arbitrary parameters obtained by least squares
fitting, in such long extrapolations beyond the range of their data base
generally prudﬁces highly erratic behavior. Furthermore, considerable addition-
al difficulty could be anticipated in applying such methods to mixtures. Mixing
rules for non-physical parameters in the context of empirical correlations are
generally arbitrary and often not useful even within the range of the data base

and hence their behavior in extrapclations is unpredictable,

The original plan on which this research was based envisioned the use of
the then developing and fundamentally based integral equation theory for the
equation of state of fluids.4 At the time this work began, that theory, though
very promising for one component systems, had not been applied to mixtures nor
had any attempt been made to integrate it into the context of chemical or phase
equilibrium. It was not clear how one might calculate the free energy and
chemical potentials of a multicomponent mixture within this approach. The study
of the possibility of using the integral equation approach was, in fact, to
constitute the major part of the research program supported by this contract
with the probability of success not entirely clear. A rather complex and
purely numerical approach was envisioned which, although it might of necessity
be very complicated in a numerical semse, might nevertheless be expected
ultimately to be made to work, Because of its expected complexity, the basic
numerical parts of the problem were postponed in favor of a close study of the
details of the integral equation approach itself, Initially, this involved
examining integral equation methods as a means for representing the equation of

state of pure substances before looking at them as possible methods for mixtures.

Any statistical mechanical method which could be used in this work
(particularly one consistent with the earlier tables) including the integral
equation approach, requires the use of intermolecular potential functions. For

the tewperatures of interest in aerodynamic problems, such intermolecular

agga
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potentiel functiona would certainly be uged beyond the range In which data fits
were carried out to obtain their parameters, This means that methods uged to

5E

obtain these parameters would need to be understood very thorocughly. Further- 33%;
5
more, beczuse of the implicit way in which the potential functions appear in §#£?

statistical mechanical theories, the effect of uncertainties in their parameters
on the accuracy of calculations in which they are used is not always clear. For
these reasoms, much of the time in this research program had to be gpent in the
study of the means by which intermolecular potential fimetions are obtained

from experimental data of various kinds and in the study of the effect on cal-
culated tables of extrapolating incorrect intermolecular functionss. Although
this extrapolatien of the potential parameters beyond the range of the data
could be expected to introduce errors, these errors could be expected to be far
less than those obtained from extrapolation of least squared fits to data such
as are common in the usual empirical approaches. Furthermore, one might expect
the general behavior of the functions calculated to be reasonable. Thia follows
from the fact that the essentiasl behavior of the potentisl function would be
correct and from the fact that the "actual" potential functions would not vary
with temperature so that the relationship between the potentials chosen and the
"real” ones would not contain any hidden surprises on extrapolation to higher

temperatures.

Although the present work emphasizes the high density region, it had to be
designed to retain the earlier tables, Since these earlier calculations already
coverad densities up to 100 times normal sea level density, the extension from
100 to 1000 times normal density needed to be done using methods which included
the earlier approach. At the highest densities, the earlier tables included a
correction for the second virial coefficient based on the intermolecular feorces
between the molecules. Hence, almost any approach is consistent with the
earlier tables 1f 1t makes uge of a statistical mechanical theory based on these
same intermolecular forces provided that this theory has the same (and correct)

linear term in its low density expansion.

As the work progressed, alternative approaches were examined in an attempt
to avoid the numerical complexity expected in the integral equation approach.
These other methods were rejected either because their complexity did not offer

any advantage over the integral equation approach or, more usually, because they
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Tequired the extrapolation of parameters which had no physical basis. Ome.
altermative which appeared to hold promise, resulted from research by one of us

(Lester Haar). An equation of state for single component fluids was developed ‘ﬁhﬁ
which seemed to us capable of being used in this work in a computational %@5

Procedure far simpler than that projected for the integral equation method.

Also, it was based on fundamental ideas and was thought to provide a natural
extension of the previous WBS tables. The approach is based on an equation of
state due to Hear and Shenkere, (Hs), which was developed for the extrapolation
of low density experimental data of one component system to high densities along
isotherms at crdinary temperatures. According to the assumptions on which ir wag
based, the HS equation was expected to work well at temperatures above the
critical temperature and to improve with increasing temperature and this was
indeed found to be the case by them. They also found indications that the method

could be used to produce engineering calculations of reascnable accuracy even
below the critical temperature into the liquid range.

The HS equation uses second virial coefficlent dats at each temperature as
a basis for extrapclating to high densities, In our studies of the relationship
between second virial ccefficients and intermolecular potentials, we saw that
the determination of intermolecular forces from second virial coefficients, 1if
done properly, could be used to produce a temperature extrapolation of the
second virial coeffcient to higher temperatures even as high as required in
aerodynamic calculations. Thus, given an intermolecular potential function for
a particular substance, a complete high temperature PVT surface could, in
principle, be produced for that substance, with the potential function being
uged to caleculate second virlal coefficients at all temperatures of interest
and these virial coefficients, in turn, serving as the basis for the HS equation
at all demsities,

Before it could be used in this work, the HS5 equation (which was developed
for a pure substance) had te be extended to mixtures in the context of a
reacting gas. This we have done and the details of the formaliam will be
presented in this report. The resulting formalism was used by us to produce
the attached set of tables, A difficulty is expectedlto arise in this formalism

whenever there is a need for intermolecular potential functions between
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fragments which are present imn the mixture at high temperatures but which do not
exist at ordinary temperatures. Potential functions between such molecular
fragments can, however, often be characterized approximately by means of the
potential function which describes the vibraticnal spectra of the combined
fragments or, falling such spectra, from estimates of molecular sizes. Sinece
egtimates of|the intermolecular forces between the various species had to be
made for the earlier tables {including those species not present at ordinary
temperatures), the basic data needed for this approach were actually already
available at the start of this work., In order toc ensure consistency in the
initial calculations, we decided to use these same estimates of these forces in

the calculations on which we report here.

Although the formal framework of the approach used by us is a valid one, the
values contained in the attached tables should, for a number of reasonas, only be

considered an interim set of wvalues:-

1. The estimates of the intermolecular potentials used are based on an
old analysis by Wbolley7 in terms of the (12,6) potential function. As a
result of our earlier work under AEDC support, better potentials are now known
and should be used for the major species and these same potentials should also
be used in place of the {12,6) for the new estimates of those associated with
the minor species. As already mentioned, we used these older estimates so as

to ensure consistency between these tables and the earlier tables.

2. In geveral cases, certain unknowm intermelecular potential functions
were arbitrarily taken as equivalent to others that were known. The effect of
this could be important at the very highest densities,

3. As we shall describe below, we have used an ad hoc approach in the
determination of hard sphere diameters at those temperatures for which the

slope of the second virial coefficient is negative,

4, In this work only the compressibility factor and equilibrium composi-
tions have been calculated.

Each of these compromises has been made in order to produce results to test the

approach, leeving the production of more extensive tables for possible later work.

o
s
£

1?

"".!'|



AEDC-TR-78-85

Grabau and Brahinskya, (GB), attempted an extrapolation of the earlier NBS
tables to 103 times normal density for air and nitrogen. Their method was
egsentially semi-empirical. Their method was based on an equgtion having, in gg%'
part, a fundamentel basis and which contained a dependence on ideas partially %g%?
related to the use of intermolecular forces. Their method could not be applied
to a gas of varying composition (i.e. a reacting gas), for which reason théy
restricted their air calculations to temperatues below 6000K. Their method
would alaso be expected to lose accuracy Qery rapidly at any temperature as the
density increased due to a need for successive subtractions and becsuse of their
neglect of higher order terms, Since their method wvas based mainly on a graph-
ical extrapolation, even qualitative estimates of its adequacy could not be made
by them,

In this report, we compare our results with the extrapoiation of Grabau
and Brahinsky. These comparisons are interesting and will be discussed below.
The agreement between the two extrapolations at intermediate density at the
temperatures which they have in common is expected since the GB extrapolations
were based on the earlier NBS tables with which our results are entirely
consistent., The two results show considerable disagreement at the highegt

densities for reasons discussed below.

Our report centains plots at two representative temperatures of species
concentrations for some important species. These plots show some interesting
and possibly unexpected density behavior as discussed below. Information on
composition behavior is not available in the approach of Grabau and Brahinsky
since their method is applied to the thermodynamic properties only. Of partic-
ular interest in our plots are the dependences of concentrations on density as
produced in three widely used approximations - the ideal gas, the second virial
coefficient gas and the HS gas. Regardless of the ultimate accuracy of our own
model, the differences among these three approximations can be expected to be
indicative of the magnitude of the effect of the analogous three approximations
in any other (and possibly more accurate) theoretical model,

Many wmexpected technical numerical and computer programming problems were
encountered in adding on the extreme high density end of the calculation.
These had to do with numerical difficulties in obtaining solutions and will be

discussed only in passing in this report.,

10
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I1. THE EQUATION OF STATE OF HAAR AND SHENKER
A. BACKGROUND

The first step in the calculation of the thermodynamic properties of a re-—
acting mixture involves the computation of the composition corresponding to
reaction equilibrfum. Within the framework of the formalism previoualy used by
ug, this corresponds to the soluticn of the equations assoclated with the law of
mass action, as modified to take account of any non-idegl effects, subject to
the conservation laws for nuclear types. The mags action relations can be

written

- X g g y1 My g Vik 1
€y = Kylofog) LT YITT G (1)

where the Ck are the concentrations of the reference speciea, ik the
stoichiometric coefficients for the reaction, Ei " Ki(TITo) i with Ki the
equilibrium constant, ~w, = Ivij-l the net production of particles acrosa the
reaction, Po the density at standard conditions (for P = one atmosphere
pressure and for T = To = 273,15 kelvins) and where Yicz)is the effective
activity coefficient for the Eth non=-ideal effect for the 1th reaction. A
detailed discussion of this equation amd its derivation are contained in
reference (3) and will not be repeated here. The Yi associated with the Debye-
Huckel theory and that associated with the second virial coefficient are
contained in Appendix B of reference (3). The derivation of the yi for the HS
equation constitutes a major part of this report. For the moment, it will be
enough to state that, in principle, a yi can be obtained for any equation of
state but, in practice, the procedure is very complicated and not always clear.
The mnderstanding that formal expressione for the yi for the HS equation can be
obtained constitutes the motivation for the following extended discussion of

that equation of state, of ite development and of tests of its validity.

11
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Haar and Shenker (HS), developed an extremely simple equation of state
based on the virial expansion =nd on the behavior of the virial coefficients at
high temperatures, The HS equation requires only a kmowledge of the second
virial coefficient and its first derlvative at each temperature and from thie
the behavior at all densities is obtained. As already mentioned, the HS
equation can be used, In a very simple and straightforward manner, to extra-
polate PVT data in both the temperature and density directions. It is also
expected to improve with increasing temperatures since the validity of the
assumptions on which it is based improves with increasing temperature, It is
therefore particularly well suited for thege calculations.

The'development of the equation of state was motivated by earlier work by
Haar and levelt Sengers9 who showed that only two parameters are required to
correlate thermodynamic properties for a number of simple non-polar gases along
individual isotherms, The two parameteras of Haar and Levelt Sengers had to be

different for each temperature and were obtained by fits to experimentsl data on
each isotherm, These two parameters could, in principle, be determined from
experimental data at each temperature in a number of different wavye.

The equation of state of Haar and Shenker also has two parameters for each
iszotherm with the values of the parameters being determined from values of the
experimental second virial coefficient., Since there are two parameters at each
temperature, two properties of the second virial coefficient are required at
each temperature to determine their values. Haar and Shenker chose for these
the second virial coefficient and its first derivative. The parameters so
obtained can be regarded as being an effective temperature dependent molecular
size, which sets the scale of density on the 1sotherm, and an effective temp-
erature dependent molecular well depth which sets the temperature scale on which
the isotherms are assigned, Each of these parameters is asaociated with the
experimental system. In the following derivation these two guantities will be
considered to be only slowly varyiﬁg funetions of the temperature which greatly
simplifies their calculation. This assumption is certainly valid in the range
of temperatures of interest in this work. In this way Haar and Shenker
develcped an equation of state for the correlatiom and predictien of high
density data at temperatures above critical using two temperature dependent

parameters. The parameters chosen have a fundamental basis and a simple method

12
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for their determination was devised. The fact that the parameters so chosen
could also be assoclated with notioms of corresponding states promised general

success.

The repulsive energy between two molecules in a gas cen generally be
characterized by a very steep functfon at small intermolecular separations. To
a first approximation this repulsion can be described by the interzction between
hard spheres. BSince repulsive effects are known to dominate at high tempar-
atureslo, it is reasonable to take the equation of state of a gas of hard spheres
(for which there are only repulsive effects) as a starting point in the develop-
ment of an equation of state for any gas at high temperatures. To facilitate
this, Haar and Shenker express the actual equation of state as the sum of a
hard sphere contribution {(to be calculated by a method as yet unppecified) plus
the difference between the actual equation of state and this hard sphere
contribution. This involves no approximations since the two parts add up
identically to the sctual equation of state regardless of how the hard sphere
contribution is handled. The first approximating assumption consists in taking,
for the hard gphere contribution, the result obtained from Percus=Yevick theoryll
using the compressibility equation of state, It has beer shown that thils
representation differs only slightly from exact hard sphere theory up to
densities approaching 2/3 the close packing densitylz. A second {(and wore
gerious) approximation involves the choice of methed for obtaining the hard

sphere diameters needed in the Percus-Yevick theory,

The derivation of the BS equation of state starts from the assumption that
the N body potential of the fluid can be represented by & sum of pair-potentials
and that the Ursell-Mayer virizl expansion in the densityl3 is valid for all
potential functions of interest, The virial series for any potential is then
transformed into a rapidly convergent expansion about the hard sphere series,
Finally, the equation's parameters are fixed by imposing as boundary conditions
the requirement that the first correction to the ideal gas be valid. This last
follows autcmatically when the second virial coefficient is used to determine
the parameters and is the basis of the consistency between our medel and the
earlier NBS tables,
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B. DERIVATION FOR A PURE SUBSTANCE

The Ursell-Mayer expansion for the equation of state is written, -
-1
Z= E B p" , (2)
n=1

volume, P the pressure, B = 1/kT, and N the number of molecules in the system.
The density expansion (2) for the compressibility factor 1s certainly valid in

where Z is the compressibility factor, defined by z = E% 3 0 the reciproecal

the gas phase and can be considered to be an exact representation of the com-
pressibility factor Z. The Bn in (2) are the virial coefficients and are well-
knownl4 integrals, obtained from statistical mechanics, involving the inter-
molecular interactions among 2,3,4, ete. molecules respectively. We now
formally develop each of these virials about that for a hard asphere of some

(as yet arbitraryj diameter via the identity

h.s. n.8.
n n n Bn * (3

where B:'s' 1s the o virial coefficient for the hard sphere. Using (3), we
can rewrite eq. (2)

Z = B p + (B _Bh-S. n-1
ngl nzl n n Yo “

where, comsistent with the formulationm, B?‘s' - Bl = 1. It should be noted that

(4) 18 an identity and so does not invelve any new assumptions. (4) iz there-
fore still an exact representation for Z. The first sum on the right-hand side
of Eq, (4) 1is the equation of state that would be ohbtained for a gas made up of
identical hard sphere molecules. The hard-sphere gas has been studied exten-

sively in computer "experiments" via molecular dynamic315 and Monte Carlol6 cal-
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culations and theoretically via the Percus-Yevick approximstion. The hard-
sphere summarion in (4) can therefore be considered to be known for any partic~
ular sphere size, The task inherent in the evaluation of (4) 1s to obtain a
simple representation for the perturbation terms, i.e. the aecond sum on the
right of Eq. (4), and to obtain a proper hard sphere diameter to use in the
first term.

We now present an argument which shows that the perturbation terms, i.e.
the second sum on the right-hand side of (4), converge rapidly above the gas-
liquid critical temperature so that at such temperaturea only the term linear in
density needs to be considered. The prospect that this convergence might

persist to somewhat lower temperatures is implied in work by Woolley17.

To 1llustrate our argument, in Fig. 1 we plot a few of the lower virial
coefficients for the Lennard-Jones (12,6) pair-potential. The reduced virials
* & *
32, 33. and 34 with

* 2 3.n=1
B =B /(31N

are plotted against the reduced temperature T* = (S:)_l, where ¢ 1s the Lennard-
Jones length parameter and € the well depth. At low temperatures the contribu-
tion from the attractive part of the potential (regioms of negative energy) is
important and the lower virials tend to large pegative values. At the higher
temperatures, the repulsive part of the potential (regions of positive energy)
tends to yield the dominant contribution and the virials become positive, Thus,
in Fig. 1 we see that B; monotonically increases, with decreasing slope, from
large negative values to positive ones, finally passing through a maximum. It
is apperent that as the temperature increases, the contribution of attraction
decreases relative to that of repulsion, even though the contribution of
repulsion is iteelf slowly decreasing with increasing temperature. We suggest
that at seme temperature, not much beyond th: temperature where B; achieves its
maximum, the contribution of attraction t: BZ is relatively small, This occurs
at a reduced temperature somewhat sbove T = 30, Thus if the hard-sphere

contribution is chosen appropriately, we would expect that the perturbation
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terme linear in density would be quite small at temperatures somewhat above

T* = 30, Likewise we expect that for the third, fourth, ete. virials the g@%
contribution of attraction becomes relatively small at temperatures starting
somewhat above the temperatures for which these virial coefficients achieve
their (initial) maxima. The maximum for the third virial coefficient occurs at
about T* = 1.25 corresponding to a temperature near the liquid-vapor critical
point for simple substances. The temperature at which the fourth virial
coefficient would achieve its maximum is also in this neighborhood. (This is
also true for the fifth virial coefficient not shown in the figurelB).He invoke
a corresponding states argument and assume that the disappearance of attractive
contributions to the third and higher virial coefficients above the critical
temperature should be 2 general property of any simple gas. Thus, we suggeat
that at temperatures somewhat sbove the critical temperature the second virial
coefficient includes all of the major effects due to molecular attractions, and
that the higher wvirial coefficients are Primarily determined by the repulsive

interaction. For each substance, at any given temperature, we therefore repre-

sent the repulsion between the molecules by that in a gas made up of identical
hard spheres whose diameter is somehow chosen so as to be appropriate to that
substance at that temperature. We then use thig hard sphere pas to represent
the total contribution of each of the virials above the second at that tempera-
ture. This certainly should be a good model at the temperatures of interest in

our work,

Based on the preceding arguments, for temperatures of interest here, the
second sum in the equation of state, Eq. (4), can be truncated after the term
linear in the attractive contribution., The hard sphere part, on the other hand,
contains contributions to all orders of the density., To represent this hard
sphere part, we employ the results of the Percus—Yevick theoryll using the
compressibility form for the equation of state. This is & good approximation
at low densities, and is in error by, at most, 5% at densities approaching 2/3
close packing of hard spheres, a density well beyond those of interest here.
The equation of state is written, therefore,

. ltyty’ 2 _ (5)
= < =5 +t4 G 1),
(1-y)
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where 4y = bp, and b is the hard sphere second virial coefficient,

2 ;
bnSﬂNa3 (6) "1@

a being the temperature dependent hard sphere diameter. For a given temperature

1
11

Eq. (5) 1s a two constant eguation of state, these constants being the hard
sphere dlameter a and the well depth associated with the representation of Bz.
An important feature to be used below i1s that the equation (5) 1s easily inte-
grable in closed form to yield a free energy.

As already mentioned, to evaluate the two equation of state parsmeters for
2 particular gas at each temperature we shall employ the numerical values, for
that gas, of the second virial coefficient and its first temperature derivative.
To bring out the connection between these two parameters and the molecular
digmeter and the intermolecular well depth, we introduce an effective inter-
molecular interaction that has the general features of a typical pair potential,
except that it is specifically characterized by a hard aphere cut-off at some
diameter a(T) at which point it is joined to an attractive bowl of well depth
€(T) (Note that we have explicitly indicated the temperature dependence of these
quantities,) The purpose of this effective function is to provide a means for
transforming the repulsive and attractive parts of the "actual™ potentizl of
the gas into an explicit hard sphere diameter and a well depth. Typical
functions of this kind are shown in ¥ig. 2,

4 gpimple numerical method has been developed for the determination of the
parzmeters a and ‘e at each temperature. The method starts with tables of

* *
reduced second virial coefficients B* and their first derivative T L) for

ar*
the effective potential function (i.e, the function with the hard sphere cut-
off). At any given temperature, these reduced quantities are required to yield
the values associated with the experimental system being described. Thus the

conditfons on these reduced quantities are,

*
Bexp (T) = b B ({(kT/e) (N
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dB___(T) *
and T dTeEE -p T EE; (kT/e) @) ﬁﬁf

dr 3

i

where T is the temperature of interest. On the right-hand gide, we have

indicated the dependence on T* by kT/e to emphasize the fact that c/k is an

unknown quantity. The right-hand sides in (7) and {8) are the reduced quanti-

ties as calculated for the effective potential function (1.e. the potential with

the hard core)., It should be noted that the right hand side of equation {B8) containg
the implicit assumptions that da and de/dT can be neglected in the calculation of

dT
a and €. On dividing Eq. (8) by Eq. (7), there results

I Dem . T oat.g (9
*
Bexp dr B dT*

It i3 a simple matter to produce a table of values for the quantity Q as a
function of T for the effective potential functionm, By way of illustration Q*
values are listed in Table 1 for a particular effective potential. The same
quantity (i.e. the left hand side of (9)) is then calculated from experimental
data as a function of T, (9) is then solved for e/k at a given experimental
temperature T, This is done by starting with the experimental valne of Q* at
that value of T, and, by interpolation, finding that wvalue of Q and the value
of T associated with it in the table of values calculated for the effective
potential. &/k i1s then calculated at that temperature from the relation

e/k = T/T"

This procedure guarantees that Eq. (9) 1s automatically satisfied at the chosen
experimental value of T, This e/k value is then used in {7) to obtain b and
therefore a3. By carrying out this procedure at each temperature, a(T) and e(T)
are determined for all experimental points. The equation of state is then cal-
culated at each temperature T using b(T) and B (T ) 1n equation {5). (The use
of B (T ) is equivalent to the use of e(T)).
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One of the difficulties associated with the above procedure involves the
caleulation of dB/dT from experimental data which are gemerally not emcoth and
not presented at counvenient temperature intervals., A reasonable way to do this =t

is first to fit the experimental B(T) data to a realistiec (l.e. one which contains ?Egé
% ‘?
a dependence on r for small r) potential function (as opposed to the effective

potential Whiih has a hard core cut—off for small r} and to calculate smooth tables

of B and —=L values using that funetien.
exp dT

The procedure outlined for solving Eq. (%) does not work for those temp-
erature at which dBexP/dT < Q. Because the effective potential has a hard core
repulsion, ite second wirial coefficient doeg not hawve a reglon of negative
slope and solution of (9) becomes impossible since the negative value of Q*
associated with the experimental system is being sought in the table for the
effective potential which contains only positive values. Under such conditionms,
we have proceeded by neglecting the attractive contribution by setting B* equal
to unity in (7). This leads to a negligible discontinuity in b(T) but in a non-
negligible one in _1t3 temperature derivative.

C. COMPARISONS WITH EXPERIMENTAL DATA AND OTHER THEQORIES

1. Sensitivity to the selection of the attractive part of the effective
potential,

It should be obvious that the effective potential plays nc fundamental role
in the HS theory but is used only for computational comvenience, being used to
extract an effective hard sphere diameter from the second virial coefficient.

It clearly should oot be allowed to introduce any of its own character into the
caleulation, For this reason, we shall precede a detailed comparison with
experiment, by an examination of the sensitivity of our method to any particular
choice for the shape of the bowl used in the effective potential. In Fig, 3 a
plot of the sphere diameter a(T) vs, T* is shown for the two effective potential
functions corresponding to m=9 and m=10. As expected from the behavior of a
typical intermolecular potential function at small separation, the effective
sphere diameter is a monotonically decreasing function of the temperature. The
ascale of the abscisaa is nermalized so that a(T) = 1 for the effective potential
function given by m=l2, The parameters a and € were calculated from equations

(7) and (9) for each of these effective potentials uging values for B, and deldT
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calculated with a Lennard-Jones (12,6) potential in place of experimental data.
The choice of a particular effective potential function, that is, the choice for
the shape of the potential boﬁl in Figure 2, is far from umique, for, in
addition to the dependence on m, the bowl shape could be affecte& by adjusting
the exponent in the attractive term.

At a reduced temperature T* = 3.0, a(T), and hence the equatiom of state,
was found to be relatively insensitive to m, that is, to the shape of the bowl
appended to the hard sphere core. At higher temperatures, the sphere diameter
becomes completely independent of m. In such a case, the procedure used for the
evaluation of the sphere size can be further simplified, as will be discussed
below. On the other hand, as the temperature is reduced, the hard-sphere size
tends teo become increasingly sensitive to m. This results in a useful precedure
for determining an optimum value for m for a given aubstance. This comsists of
comparing experimental PVT data with those predicted by the HS equation at a
low temperature for effective potentials characterized by several values of m
umtil a beat fit is obtained. Because of the insensitivity to m already
describéd. the value of m chosen can obviously be used at higher temperatures.
The method has thus been modified to produce a good low temperature fit, Haar
and Shenker used an isotherm near 3/2 times the critical temperature for the low
temperature fitring,

We include, in the next section, a comparison of the predictions of the HS
equation with other theories and with experimental data for argon and nitrogen.
It is eaaily determined that mm9 and m=10, respectively, are reasonable values
of m for these fluids. Since the sensitivity of the equation of state
properties to m is weak except at low temperatures, m=9 can also be tgken for
nitrogen when the temperatures of interest do not extend much below twice the
critical,

2, Relationship to other fundamental equations of state.

It 19 useful to compare the HS equation with equations of state which have
the appearance of being more fundamentally based. The latter are invarfiably
much more complicated than is the HS equation so would have to produce far
superior results to it to warrant their choice over it. In this comparison,
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we shall ineclude an example of an integral equation (the Percus-Yevick} as well
as the perturbation theory approach of Barker and Henderaon. Although the latter
is developed totally within the language of statistical mechanies, it is not
unrelated to the Haar-Shenker approach which has been described with an emphasis

on phenomenological language.

A major objective of statistical mechanics is to predict the properties for
real fluids at high densities from the known properties of the dilute gas. To
accomplish this, it is usual practice to reduce exact theories (such as that
asgociated with Eq. {2)) to theories in which interactions among several
particles are palrwige additive, The properties of the dense fluid can then be
formulated in terms of the detailed structure of the potential functions which
describe the forcea between pairs of particles. Considerable progress has been
realized using this approach. Relevant to our work are the expaneions in
density based on Percus-Yevick (PY) theory and expansions in reciprocal temper-
ature using the Zwanzig theoryl9 as modified by Barker and Hendersnn20 (ZBH).
These have been tried for several potential models including the hard and soft
spheres, the square well, and the Lennard-Jones potential. The ZBH temperature
perturbation theery appears to be the more successful when compared to results
of computer experiments, particularly at liquid temperatures but also for gases
at high densities and a2t high temperatures.

Though the ZBH theory is a physically satisfying approach and does compare
well (except at low liquid tewperatures) with results of "computer experiments",
we note several practical limitations. The most serious of these is associated
with the application of the theory to real fluids., In the ZBH theory the
perturbation terms are obtailned as an expansion about the hard sphere. Barker
and Henderson have shownzo that the theory can yield quantitative results when
the sphere diameter is expressed in terms of a kind of Boltzmann average of the
molecular separation, where the average 1s taken over the positive energy region
of the pair potential. Sphere sizes caleulated in this way are also contained
in Figure 3. It is a fact, however, that the shape of the pair potential even
for simple systems is gquite uncertain, In this connection it has been provenzl
that for realistic (non-monotone) potentials it is not possible to obtain an
unambiguous representation of the pair potential from second virial coefficienta.

Alse at high densities the sphere volume tends to affect the equation of state

21
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properties somewhat like an excluded volume, so that ambiguities in the sphere
dlameter are amplified in their effect on the equation of state at high

densities. We shall present an example of this below. Thus, though the ZBH iﬁﬁi
theory is theoretically satisfying, its application would seem to be limited to Egﬁi

situations where the pair potential 1s known, as is the cage for "computer
experiments". The fact that the use of this equation of state to produce therme-
dynamic tables requires a complicated numerical integration poses a second
limitation to the 2BH approach. Because of this, results have sc far been
obtained as a theoretical end in themselves and are therefore of somewhat
limited utility to the engineer or scientist who desires a simple analytic

representation of the equation of state as a predictive tool,

It should be appreciated that the hard-sphere diameters are only conve-
nient artifices. Physical interpretation is meaningful only in the context of
the particular overall theory. However, sinece the ZBH and the present theory
are quite sensitive to the hard-sphere diameter, agreement between them at
least to within several percent for a(T} would be necessary for the two

approaches to yield comparable equation of state properties at high densities.

3. Comparisons of the HS equation of state with experiment and with other

theories.

In this section the HS equation of state ig used to calculate compress-
ibility factors for the real! fluids argon and molecular nitrogen. The results
are compared with PVI experimental data, and, In the case of argon, with
results of "computer experiments" and with ZBH theory, The experimental second
virial coefficients used as input data to obtain the required parameters ‘are
smoothed values calculated from model pair potentials as determined from the

experimental second viriale,

The Figs, 4=-B8 contain i{sotherms caleulated for argon using the HS
equation of state and the ZBH theory. The compressibility factor is plotted
versus the reduced density, p* = No3p, for isotherms from 119.8K (=,.8 critieal)
to 673.15K. Curves labeled #1 represent the compressibility factors predicted
by the HS equation of state. The curves #2, #3 and #4 represent results of
second order temperature perturbation ZEBH theory, for a Lennard-Jones gas with
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parameters ¢/k = 119.8K and o = 3.405 X as reported In references 22, 23 and 24,
respectively: the curves #2 and #4 are obtained by numerical integration of
approximate expressions for the perturbation terms and are easentially equiva--

lent treatments; the curves #3 refer to an "exact" calculation of the second

e

order perturbation terms via Monte Carlo techniques, The curves #5 represent
experimental compressibility factors measured for argon. The data points on
Figs. 4, 5 and 6 are results of "ecomputer experiments"” for the Lennard-Jones
gas with the above parameters, the circled points referring to Monte Carlo
results and the boxed points to molecular dynamics results. The "computer
experiments" could be uncertain by 5 to 10%.

Since use of the Lennard-Jones potential with the above parameters does not
produce second virial coefficients which fit the data for argon below ZUDK25

Figs. 4~6 are interesting primarily as comparisons of theory with the results of

the "computer experiments.”

These figures show that the present theory, as well
as the ZBH theory, are only qualitative at these temperatures. However, the

ZBH curves #3 yield a somewhat closer approximation to the resulte of “computer
experiments” for liquid densities. As previously stated, the Haar-Shenker
equation of state tends to degrade at low temperatures. But it is apparent from
Fig, 4 that the theory is still at least qualitatively good at temperatures
even as low as .8 of the eritical temperature. In fact it is only for curves #3
(which involve extensive numerical calculations to evaluate the second order
perturbation terms) that the temperature perturbation results are a significant
improvement over the HS equation of state.

&n explanation for the fact that the "wrong" potential gives the correct

results in the ZBH theory for argon hag been offered by Barker, Henderson and

26
Smith,

happens to be an "effective potential" that, to first order for argon, accounts

They argue, that the (12,6) pair-potential with the above parameters
for high density non-additive effects.

The Figs. 6=B include the temperature region for which the pair potential
used produces a good fit to the experimental second virial data. Compatrisons
of our results with experimental PVT measurements for these temperatures are
therefore more meaningful, The HS equation of state (curves #1) tends to follow
the PVT experimental data {curves #5) fairly closely at the lower densities, up
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to about p* = 0.6 (which is approximately twice the critical density). At

higher densities it tends to yield values that are low, but in most cases only

by less than 5%. The results are roughly comparable to those for the more %
complicated ZBH theory, The ZBH theory (curves #2, #3, #4,), however, tends to :
underestimate at demsities near the critical and to overestimate at high

densities. The results of the "computer experiments" seem to scatter among the

various theories, Thus, in Fig. 6. at p* = ,75, the Monte Carlo results tend

te favor the HS theory, at p* = .9, they favor the ZBM; while at p* = 0.55 they

fall between the results of the two theories, in fact, almost on the PVT

experimental curve #5.

We have stated above that uncertainties in the pair potential for resl
fluids 1limit the utility of the ZBH theory as a tool for predicting the equation
of state properties for such fluids, To 1llustrate this we compare the equatiom
of state of argon for a particular isotherm with the ZBH and HS theories, in
which different inverse power representations for the pair potential are used,
each of which produces an equivalent fit to the experimental second virials.z’ln
Figs. 10 and 11 equation of state results are presented for two representatioms

for the pair potential for argon: the (18,6) with the parameterszs

e/k = 160.87 K
o= 3.261 4 .

as curves #1; the (12,6) with parameters given earlier, curves #2, Fig. 10
includes the results for the ZBH theory; Fig.1ll those of the HS equation. Both
figures refer to the isotherm 239.8K. In these figures the compressibility
factor is plotted against the density in amagats. All the numerical data for
Fig.10 were furnished by Toxvaerd.23 The results for Fig.10 show the two curves
near coilncidence up to a density about 2/3 the critical (critical density for
argon = 300 amagats) but sharply divergent at higher densities. By comparison,
the results for the HS theory in Fig.11 are relatively potential independent,
The reason for this independence is obvious. The HS equation depends only on
the experimentzl second virial coefficient and its first derivative. Since the
same values for the second virial coefficient are obtained for either potential

* 2.0), the caleculated second

for a range of temperatures near this one ('1‘12 6=
1

24



AEDC-TR-78-B6

viriais and their first derivatives are equivalent. Since the details of the
repulgive branches of the potentials are different, however, the caleulation of

the hard sphere diasmeter according to the prescription of Barker and Henderson 35&
ylelds different results for the two potentials, This difference, in turn,

produces a difference in the equation of state predicted.

G

Finally, in Figs. 12-15 we present results of using the HS theory for calculat-
ing the equation of state of molecular nitrogen. The compressibility factor is
plotted versus the fluid density in amagat units. Here, the experimental
second virial coefficilents were represented by smoothed tabies calculated using
the Lennard-Jones pair potential with parameters ¢/k = 95.781K, and o = 3.712 &,
The curves #1 refer tc the present theory: the curves #2 to experimental PVT
measurements., The latter extend to 10,000 atm in Fig. 15, The sphere diameters
are obtained from Fig, 3 with m=10, The comparizon of theory with experiment
for nitrogen ia quite similar to that for argen. As with argon, the HS theory
is In good agreement with experiment st low densities, but at the higher
densitfes the experimental PVT isotherms tend to be slightly steeper,

4, Summary.

Based on the virial expansion and on the behavior of the virial coefficients
at high temperature, Haar and Shenker derived a quantitative yet simple equation
of state which is valid for real fluids over a density range from the dilute
gas to densities approaching that of the sclid at temperatures above twice
critical, and which requires only a knowledge of the second virial coefficient
and its first derivative at each temperature. This equation of statelis much
simpler than the ZBH temperature perturbation theory and furthermore does not
require reference to the precise detaila of the palr potentials. The equation
proved to be quite successful in comparisons with experimental data, These
comparisons were naturally carried out for ordinary temperatures since experi-
mental data exist only for such temperatﬁres. Figures 2 and 3 contain such

comparisons for argon and nitrogen.
Through the use of the intermolecular potential function, the HS egquation

of state can be used, in a very simple and straightforward mamner, to¢ extra-

polate PVI data in both the temperature and density directions. Thus, the inter-
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molecular potential is used to extrapolate the second virial coefficient as s
function of temperature and this, in turn, is used with the HS equation to cover

all fluid densities., Thie approach is therefore particularly well suited for 3§E~
n-.}.!‘=
aerodynamic calculations since, as already mentioned, these require temperature et

extrapolations of up to a factor of ten for dengities up to those which, at low
temperatures, correspond to the liquid. Because of the decrease in the attrac—
tive contribution to the second virial coefficient with temperature, this
equation of state should improve with increasing temperature. As a result, the
comparisona made at ordinary temperatures should easily be sufficient for
estimating the expected adequacy of the theory at high temperatures. Since this
equation of state depends only on the second virial coefficient which, in tum,
is determined once the intermolecular potential 1s known, it becomes possible
to develop an entire PVT surface given this intermolecular petential funetion,
or equivalently, given a sufficient (generally small) amount of low dengity PVT
data for the substance at ordinary temperatures, from which date the inter-
molecular potential can be obtained,

The derivation of the equatfion of state is based on an expansion in
density, where the reference state is a gas of hard spheres. We have presented
a8 plausibility argument which Indicates that, when the sphere diameter is chosen
appropriately, the terms that account for the differences between the properties
of the actual fluid and those calculated for a fluid of hard spheres are sharply
attenuated at temperatures above thé liguid-vapor eritical temperature, for
densities up to that of the solid.

It has been shown that the temperature dependence of the equation of state
at temperatures above the critical is determined by two parameters which depend
on temperature and that these parameters can be obtained from the second virial
coefficient and its first temperature derivative.

III. THE EXTENSION OF THE HAAR-SHENKER EQUATION OF STATE TO MIXTURES
Haar and Shenker developed their equatiom of state for use with pure sub-
stances. Our needs are, of course, for a theory applicable to mixtures since

at aerodynamic temperatures even pure nitrogen becomes a mixture as a result of

dissociation and ionization. There are several ways in which a theory for pure
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fluids can be extended to mixtures. Perhaps the simplest are what have been
called the one and two fluid van der Waals' theories. In the one fluid model
the mixture behaves as if it were a single component fluid (which can be called
the equivalent fluid) with any parameters used to describe the fluid being
averaged over the composition. This averaging is carried out by taking the
parameters associated with the individual constituents and suitably weighting
them to the extent that the constituents are present in the fluid. For example,
a fluld made up of a mixture of hard gpheres would be described as a one fluid
van der Waals' model by the equatioms associated with a single component hard
sphere fluld but with the single relevant parameter {that associated with the
molecular diameter) averaged over the composition, A natural way of doing this
is to take for the hard sphere volume

- 3
5:q z: Xi xj gij
i,]

where Ueq is the diameter of the molecules of the equivalent fluid and Uij

the diameter for the interaction between a molecule of the ith specles and one
of the jth gpecies in the actual fluid. For hard spheres gij = % (ci + oj).

The equation of state for this mixture is easily derived. From the virial
theorem, it is possible to derive a general equation of state for a fluid in
terms of the distribution of palrs of particles in the fluid.za Because of the
abruptness of the hard sphere interaction, this equation, for & one component

hard sphere fluid, reduces to

PV 2
T =1l+ —-;7 po? glo) (10)

where g(c) 1s the probability that a pair of molecules will be found a distance
0 apart. For a mixture of such gpheres, the equation of state becomes

PV ir 3
1,3
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where gij (aij) 1s the probability that a pair of molecules, ocne of the ith

species and one of the jth species, are separated by a distance Uij' In the one Eﬁﬁ.
fluid model, then, (11) is replaced by (10) in which %%%
si_‘] (UijJ = g (o)
and (12)
o3 = Y X, Xj Gij
1.}

This model is consistent with the results of the density expansion in the
Ursell-Mayer virial equation of state.

A number of models other than (12) can be devised for using (10) in place
of (11) for a mixture, Each of these, though reasonable, does not lead from

(11) co (10) in a natural way, One might, for instance, average the diameter
rather than the volume so that

o=zxixjcij=zxicriisinceoi=-2-(u +0,,})
1,] i

One might alsc average the volumes over like species only, i.e. od = ¢ xi cii.

We shall consider (12) as the only reasonable model, particularly since 1t is
the only ene that leads to results which are satisfactory.

A two fluid theory can be obtained from the approximation
oy = Hop, (0,0 + 8y, G -)]
B15%°19” = 71814 944 13 713

If, at the same time, one uses the fact that, for hard spheres cij = % (ui+ cj)
(11) becomes, for this model,
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B, L2
7t~ 1 +=30 in ci Byy (uu) (13)

i

In order for this to be of the pure fluid form, it must be assumed that 844 is
the distribution function for a pure fluid of hard epheres of volume ui given

by

3
o3 = L%y %4
3

Thus, if this were a binary system, it would appear to be made up of two pure
fluids of different diameters, memely of = X, o}, + X, aiz and a: - X agl +
X, a3 Hence the name two fluid theory,

22°

A fluid of hard spheres 1s a highly idealized model for an actual fluid so
might be thought to be quite useless for testing theories of fluids. There are,
however, properties for fluids of hard spheres as calculated by computer
simulation methods. If such results obtained for hard sphere mixtures are taken
as "experimental” data, it is then reasonable to compare them with (12} and (13)
to see which 1e the better approximation to s mixture of hard spheres. This

29

has been done by Henderson and Leomard“” who found the one fluid theory to be,

by far, the superior,

30 for

In a later paper, these same authors carried out a similar comparison
a fluid whose molecules interact in accordence with a Lennard-Jones (12,6)
potential function, Such a potential contains both attraction and repulsion,
and ia often characterized by a molecular diameter and by a potential well depth,
The one fluld model now follows from €0 = iz Xy Ry £y aaij.
made for an equimolar mixture and the one flﬁld model was found to be superior,

Comparisons were
particularly in the prediction of the excess free energy and heat of mixing.

The intercomparison for the excess volume of mixing was somewhat ambiguous,
however.

29
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It would thus seem clear that the most reasonable way in which a theory for
a pure fluid can be applied to that for a mixture is via a one fluid model.
This we have chosen to do for the HS equation of state. This sinplifies our

i,
kb Py

task since we need only write down the pure fluid form of the eguation of state
which we have already derived and interpret the parameters in the form of the
one fluid theory.

By (5), the HS equation of state for a pure fluid is written

2
NIy o, 5—1)3: (14)
RT (1_!?)3 b

where y =-%E « Then Eq. (14) becomes an equation of state for a mixture

according to the one fluid model, if

b= 2 X X b (15)
1,9 173 13

B = X, X, B (16)
E?é 173 1]

It should be remembered that Eq. (9) must be solved for bij for each of the
interactions included.

IVv. THERMODYNAMIC FUNCTIONS IN THE ONE FLUID HS MODEL
In thig section of the report we shall be concerned only with the real gas
contributions to the various thermodynamic properties. The ideal gas contri-
butions and certain precautions required in their caleulation are contained in
reference (3).

A, HELMHOLTZ FREE ENERGY, CHEMICAL POTENTIAL, AND ACTIVITY COEFFICIENTS.

The combination of the equation of state (14) and the one fluid model, (15)
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and (16), is sufficient for the calculation of the equation of state of a real
gas mixture at high densities, With such an equation of state it then becomes F&%

E

®

possible to calculate the real gas part of the Helmholtz free energy from

A= i/rPdV

from which the chemical potential can be caleculated using

L (%ﬁi) T, 04 3& when E& refers to all nj. j41.

When the ideal and real parts of the chemical potential are separated it
becomes possible to identify the activity coefficient for each species, By
properly combining the activity coefficients for each species taking part in a
chemical reaction, one can define an effective activity coefficient for that
chemical reaction. This effective activity coefficient directly modifies the
equilibrium constant to produce the effect of non-ideality on the chemical
Teaction. To see how this goes, let

e (0
vy hy + 4 uy

(o)

where uy is the ideal gas part of the chemical potential and aui the real
part. It follows, then, that the activity coefficient vy for this species is

given by

Au

. "y

The effective activity coefficient for species i in a chemical reaction with
stoichiometric coefficients vij' is then given by

3]
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AH
vy = Ir Yy ij]hri
h|

which is equivalent to

i = ex SRR Au, }/RT] (17)

We shall now proceed to the detailed calculation of the free energy and
chemical potential for the HS equation of state,

If at each volume the referemce state for the free energy is taken as that
of the ideal gas at that volume then

v
A(V) = A=) -f PdV

v
A(°)(V) - A(o)(w) _ f po? av

But, eince A (=) = A% (w) 1t follows that

v
A(V) - A(O}(V) - f & - P(D)} av

Since P = 1‘-2%?- and p9) - %, vhere Z 1s the compressibility factor and m the

total number of moles, it follows that

v
AW - 49y = - e { @ 5—3—

The real part of the chemical potential is then given by

32
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(0)

- v
H
1 MW 2 4y Q¥
’T RT =-5 0 JG@D

The evaluation of the common integral is obviously necessary to progress in the
derivation of both the free energy and the chemical potential,

According to the HS theory,
2
(2-1) = B 144 G-Dy
(2-y)3
Z.
o 2GT- 2y (E - 1) 4y

(1-y)3

Sincey=7‘-—,g-!--—¥. Thus

v b/av bMv
f(z-l)—--f J'—-"ﬂdy-&f (——1)dy=11+12
o (1-y33 o

In 11, let 1-y = x so that dy = -dx and
1-y 2
11 =f (1-X) ;2(1-]()-044 dx
1 X
l—y 1=y d
X .1 2
- f f -i—- o - E [(—l-:y) -1} + n (1—}‘}

1 1

Since, obviously,
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B
12 = - 43'{".6 -1)

then

JenF--digusman -y gs

so that

A - A®qw)

RT -3'[6%:y)2 -1} -0 tn (Q-y) + énycg -1)

The non-ideal contribution to the chemical potential is then given by

Au v
i dv 3

The first term has already been evaluated.
entiating (18), Thus

3 v dv 3 3 (-2)(=1) 1
— (z_l) — — e — et e e m
8 '!: v (1-—y)3 -y

IV(Z-D%‘}

The second 1is obtained by differ-

B @ 0 B
TR

At this point use must be made of the onme fluid model, Thus

2In,b
Ex_lﬂ_l[ijij

ani 4V ani 4v (c ni)2

In bi
L2 [Lj__j ]
4V n n
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Alea
3 1 28 _B 3b e
wmEM =F T, Lo

Since, obviously, %HB— will have the aame form as %—E but with B replacing b,
we can lmmediately w%:l.te dosm i

3 B 2 _
El ;z:[i“a‘u

oI

Ein, b
jjii]

Combining all results ob.ta:lned to here yields

au
i 3 1.2 _ _ B _

In, b
+[_3 3+-]é-;+4 (E—l)]%z [____j_!_i 'b]
{

n
1-y)

oiw

In, B
3 3 i In b1
+ 4y [——!‘l——— - "'"‘;j_l

- )

For simplicity we write this as

-f-'“.—i = -+
RT o T H1

In b In, B
i 13
LI R T ]
nb 2 nb

where
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3l -mu-y)—y[——?— +—-_1-]
o2 [(l-y)z ] La-n’ 17

| Hy
T:l. = exp [— wg My + 5 : n, (;‘. vij bj.?. - b“')
(19)
+u—2—— tn, fZ v, (B, ,- B, )} /RT
nb . a(j 11 3L i

where -, = Ly 14 =1 iz the net decrease in the number of particles in the :I.tl1
teaction defined earlier. With this expression for yi' it becomes possible to

calculate the effect of the HS theory on the equilibriuym composition of the
mixture,

B. ENTROPY, ENTHALPY AND GIBBS FREE ENERGCY

It is mow possible to calculate all of the thermodynamic properties predict-
ed for the HS model. The entropy follows from

80 that the real gas part is given by
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But
; (A_A)-,. I SR: 1,} (éz)
- aT
ALY S PRI R P b p

Now ) p 38b
(_a%)p "% 3T

B
3 ,B l OB = = &b
and w&® = F 3w v T
a(AA) {3 1 } B by 38
s0 that — —_l = —— F — 4 +
3 - b T b T
aT \RT (1-y) l=y
Thus

a8 3 [ 12, - 2 -1
= 5 [( Y ]] -nﬂ.n[ly)+4ny(b }

1~y

l-y

3 1 l nyT ayT
+ +— =4 —_— 4 =
{ (1_3,)3 [ b ar b 3T

d %% are expected to be quite small because of the high temperatures of

2

3T 2%

interest, Tt is therefore possible that the last two terma might be negligible
This would need to be examined, however.

with respect to the first three.

This expression for the entropy and the earlier one for the equation of
Specific

state can be used to calculate the enthalpy and Gibbs free energy.
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heats can be celculated from these functions either by numericsl differentiation
or by means of algebraic expressions which can be derived by differentiation of

the above expressions.
V. NUMERICAL METHQDS

The primary step iIn calculating the thermodynamic properties consists of
the determination of the equilibrium composition of the mixture. This requirea
the solutiom of equations (1) subject to the comstraint that the total mass of
€ach nuclear type be conserved. The effective activity coefficients, yi', are
given by equation (19) for the contribution of the HS wodel to the equilibrium
constant and in appendix B of reference (3) for that of the Debye-Htckel theory
of ionic solutions., There are two lower level approximations to the HS model
which we have already considered in earlier work. We have already used the
ideal gas approximation, in which all vi' are taken equal to uwmity. We have
alsoc made use of the second virial ceefficient approximation for which the yi'
of the HS model are replaced by the term linear in the density in their density
expansions (which term appears in appendix B of reference (3)).

The method used for the solution of the equations for the concentrations in
both the ideal gas and second virial gas has been described in some detail else-
where, 3 The procedure used here was required to be applicable to all three
approximations, i.e. the ideal gas, second virial and HS. Although based on
thegse earlier methods,there was a considerable modification of certain details
of the original approach to allow for greater flexibility in obtaining sclutiona.
In order to permit reference species to be chosen at will simply through
medification of the input data (as described in reference (3)), the calculation
of the equilibrium constants was made part of the computer program. This led to
the discovery of an error in the egquilibrium constant used for 0; in the
Previpus NBS tables. Our correctiorn of this error caused the search method nsed
for finding the electron concentration to be unstable at low temperatures, A
not insignificant amount c¢f time was spend in isolating this problem and in
correcting it. The problem was associated with orders of magnitude increase in
the concentration of 0; which occurred after the correction was inserted., As a
result, the electron concentration now became orders of magnitude smaller than

the concentration of 0; and, in fact, was now calculated as a small difference
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between the concentrations of N0+ and DE. This often led to negative interim

values for the electrom concentration during the non-linear search procedure,

Since the electron conecentration has only & minor effect on the values obtained EEE%
for the other reference species, the problem was solved by instituting a grid %ﬁ@
search for the electron concentrations, over positive values only, whenever a

negative guess value was obtained for that concentration, leaving all other

concentrations fixed at their current values,

At low temperatures, it was also necegsary to produce a very strong
"damping" of the electron concentration by means of a q value® emaller than
(but in the neighborhood of) wmity., This reduced the "natural" excursions in

the electron concentration from iteration to iteratiom.

Initially, precisely the same sesrch procedure was used for the HS model
as was used earlier for the ideal and second virial gases except that the yi'
for the HS model now had to be computed at each iteration. Problems arose,
however, because these yi' became quite large for certain species at the highest
densities. 1In fact, yi' values approaching 106 were encountered. This produced
ingtabilities in the search procedure used. This problem was solved by what
might be called a dual level search procedure. 1In this procedure an initial set
of 'ri"
constant until a set of concentrations was cbtained which satisfied the mass

were computed based on the initial guesses. These Yil were maintained

balance equations for the gas with these initial yi' values, With these
concentrations, a new set of 71‘ wes computed, These new yi' were now held
constant and a second set of concentrations obtained which satiafied the maas
balance equations for this second set of Ti' values. The procedure was carried
out repeatedly until the largest change in the 11' when recomputed was less than
a given teolerance. To reduce the poseibility of producing numerical instabilit-
les, only a fraction of the change caleculated for each Yi. was used in any new
iteration and, in any case, the Yi' were not allowed to change by more than some
arbitrary factor, In arder to reduce the computer time required, a coarse
tolerance was placed on the values of the concentrations accepted as cotreét for
the firset few sets of values (generally incorrect) obtained for the Yil in this

procedure,

The present computer progrem has, to a large extent, retained the ability
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of the earlier program to obtain solutions essentially independent of the

initial guess values for the concentrations of the reference species. The

electron concentration is perhaps an exception to this but then mainly only g;%i
-
when the computation on an isotherm begins at quite high densities. K;ﬁi

Since the few problems which we have encountered with obtaining solutions
must depend on the specific search procedure used by us, it would be useful to
study the process of solution for other search procedures., Because of its
simplicity, we would place particular emphasis on a study of the direct search
method of Hooke and JeevesBl.

Once the species concentrations are obtained in the above manner {with the
mass bzlance equations satisfied to the tolerances specified for each reference
species), the thermodynamic properties of the mixture can be calculated in a

straightforward manner.
VI. RESULTS

In thig section we discuss a number of special features of the results
obtained, reserving our discussion to those results which illustrate the effects
of density. We compare results cbtained by us for the ideal gas, second virial
coefficient and HS models with each other and, where appropriate, with the
results of the GB extrapolation. We shall also compare the concentrations
predicted for various species among the three approximations used by us, The
Grabau-Brahinsky model does not include the calculation of the species concentra-
tions so cannot be included in that part of the discussion.

Certain interesting features of the predicted dependence of the concentra-
tions on density are also discussed. Of particular interest is the demonstration
of the "“strength" of Le Chatelier's principleaz.

A. THE DEPENDENCE OF SPECIES CONCENTRATIONS ON DENSITY.
The formalism which we have developed has the capability of predicting

density effects on species concentrations. This ability is important for two
reagons. It is obviously important when the concentrations of the species them-



AEDC-TR-T6-86

selves are needed, as might be the case when specific species have particularly
interesting properties. Examples might be the electrically charged species
(which obviously affect the electrical conductivity very strongly) and any
species which radiate in a useful part of the spectrum. Being able to predict
dengity effecta on concentrations i1s alsc important In the calculation of the
density effecta on the thermodynamic properties. The expressions for the thermo-
dynamic properties of the reacting mixture are sums over concentrations times
properties of individual species plus sums of products of concentrations times
properties of palrs of species. In our model, the latter enter into the calcul-
ation of the average (i.,e. one fluid) molecular diameter. The thermodynamic
Properties of the mixture therefore depend cn temperature and pressure through
the dependence of the concentrations on these state parameters.

Densgity effects on the thermodynamic properties of air have generally been
calculated-by others on the assumption that the specles concentrations either
do not change with density or simply obey the ideal gas mass action law. This
was essentially the assumption of Grabau and Brahinsky. As we shall show, this
kind of assumption breaks down, particularly at the highest densities where the
identities of the major species in the mixture change, when demnsity effects are
gpecifically takem into mccount, This ean change the entire character of the
gas being studied,

Care must be taken here not to place too much emphasis on the actual
mumerical values obtained by us for the concentrations. The species concentra-
tions at high densities are expected to be sensitive functions of the assumptions
made in any calculation of this kind. 1In our model, they can be expected to
depend very strongly on the intermolecular forces used (especially at the high-
est densities) as well as on the method of calculating the hard sphere diameter
at temperatures for which the second virial coefficient has a negative slope.
This problem is associated with the fact that the effective hard core potemntigl
produces a second virial coefficient whose slope is always positive. The
relationship of the actusnl numericml values obtained by us to actusl air might
also be expected to depend strongly on our omission of such speciles as Nzoﬁ, cz,
03 and acme of. the molecular icns.

Because of Le Chatelier's principle, errors introduced Into the calculation
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of the concentrations for amy one of these reasons should be less than that
which might be estimated from a direct calculation of the apparent effect of the
omission. This principle is esgentially a statement of the competition among
the various chemical reactions, because of which species concentrations "resigt”
change. Thus, suppose a correction to the equilibrium constant in a certain
Yeaction produces an increase in the concentration of a particular speciles.

This increase will cause a competing reaction containing that same species to
move in guch a direction as to reduce the concentration of this particular
species. The overall effect of the original correction to the equilibrium
constant is thereby reduced. An example of this is described below., Because

of this and because any errors resulting from our various assumptions can be
¢xpected to affect the different species perhaps randomly according to sign, the
overall effects of our zeruth order assumptions on the properties computed should
actually be much smaller than might be expected from an examination of the
effects of the various separate approximating assumptions, This error reductisn
might be considered to be a decided advantage in favor of the use of a micros-

copic molecular model such as ours,

The operation of Le Chatelier's principle can be seen by comparing the
chenge in various concentrations actually obtained in the calculation when the
density is changed at constant temperature with that which might have been
expected from the change in the density factor (plpo)-mi in equation (1}.
Consider, for example, going from log n/po = 2,0 to 3.0 at T = 3000K. For the
species N20, a concentration enhancementdby a factor of 1.6::105 could have been
expected based on the value yi' = 4,3x10 at log p/no = 3,0 and w, = 0.5, whereas
the actual enhancement obtained involved only a factor of 1.7x103, There
was, therefore, a reductiom by a factor of 100,

Figures 16 and 17 contain plots of concentrations against density for a
number of species for the temperatures 3000K and 9000K. The concentrations are
those which were calculated using the full density effect with the HS equation,
and thoge based on the ideal ga25.

The dependence on density of the concentration of oxygen and the effect of

thie dependence on the concentration of the other apecies are particularly
interesting. The rapid decrease in the concentration of molecular oxygen at
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the highest densities is very dramatic for the HS gas, especially when compared
to its behavior in the other two approximations. As a result, the gas at 3000K
and 1000 times normal density coneists mainly of Hz and NO rather than of Nz and
02 ap predicted in the ideal gas approximatiom. Secondary effects from this
reduction in D2 concentration can be seen in the marked reduction in the

concentrations of 0 0; and 0" predicted by the HS theory as compared to the

2'
predictions of the ideal gas approximation.

The reduction in 0, concentratien “regulte™ from the enhancement in the
production of NO, NO2 and NZO and the associated requirement for the production
of atomlc oxygen for the formation of thege gpecies, The cause of the enhance-
ment of these species can be seen in Table 2 which contains the yi' valueg for
all species at T = 3000K for meveral densities. In the concentration units used
by us, it is necessary to multiply the Yi‘ by (p/po)'wi to obtain the full
density effect along an isotherm. As is pointed out below, in some instances
thia produces enhancement factors of 106 for the equilibrium constant.

An interesting affect, which might be called a second order effect of the
reduction in 02 concentration, was seen emong the carbon containing compounds.
According to the Ti. values of Table 2, the concentration of C should drop
dragtically with increasing density, This 1s especially true when the factor
(p/po)“l is added (bringing in an additional factor of 1[!!-3 at the highest
dengity). 1Instead, the concentration of C increases slightly with density.
This comes about because the reductien in 02 concentration causes a decrease in

the production of CO This "frees" carbon atoms which become available for

2.
the enhancement of the CO and C concentrations.

Another second order effect is that of the slight increase in electron
concentration with increasing density, quite the oppoaite of the ideal gas
behavior. This results from the decrease in the concentrations of 0; and O
which results in additional free electrons. The increase in the electron
concentration, in turn, results in a drop in the concentration of Nd+, the main
electron producer, causing the incresse in electron concentration to be somewhat
reduced from that expected purely on the basis of reduction im 0;, another
example of Le Chatelier's principle,
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Those species for which Yi' has the value of unity in Table 1 are either
reference species, for which no equilibrium constant is needed, or are ions for
which no estimates of virial coefficients were available, It should be noted
that the 71' values for the species N20 and Nﬂz begin to approach 105 at the
higheat dengities. This effect is further enhanced by the factor 33 for each
arising from the factor (p/po)-llz. The overall demsity effect for theae
species at p/on = 1000 as compared to p/po = 1,0 is then such as to multipy the
equilibrium constant by a factor of over 106. It is therefore obvious why there

is such a strong dependence of concentration on density.

The cémpetition at the highest densities smong NO, N02 and N20 (and
especially between the last two) is particularly interesting. As the density
increases, all three speciea' concentrations increase. At J000K this occurs
mainly at the expense of molecular oxygen. As the density increases, however,
the enhancement of uzo begins to proceed at such a pace as to "require" oxygen
0 concentra-
and NO. At

atoms from other reactions so that, ultimately, the increase in N

co
2' U2
9000K, the initial enhancement occurs at the expense of the oxygen atom con~

2
tion takes place at the expense of the concentrations of NO

centration but, at intermediate densities, produces a reduction in molecular
oxygen concentration, Eventually, the increased NZO concentration occurs as a

result of a reduction in NO and Noz concentrations.

The absence of estimates of the virials for interactions involving ienic
species obviously leads to errors at the highest temperatures where charged
species become non-negligible. Although these charged species do not dominate
in our approximation, it Is conceivable that they might become major constitu=
ents through enhancements caused by large Yi' values which might be cbtained.
This effect might be expected to be smaller for the ionic specles than it was
for the neutrals NO, N02 etc, for two reasons. First of all, even at high temp-
eratures, repulsion between ions of like sign 1s reduced by the effects of
attraction between those of opposite sign., Secondly, our inclusion of the Debye-
Hlickel limiting law (ace reference (3)) already imcludes part of the interaection
between charged particles.

2 7
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B. DENSITY EFFECTS ON THE EQUATION OF STATE,

Table 3 containa the compresasibility factor as a function of density at
selected temperatures for all three approximaticns as well as for that of Grabau
and Brahinsky. The ideal gas approximation contains ne correction to the
equation of state for the effect of density. 5Since there is a "density effect"
in the law of mass action as written in the units used by us there i3 a
variation in the calculated compreseibility factor with demsity. By our
definicion, the compressibility factor for the ideal gas is aimply the total
number of moles of the mixture, According to the equations of chemical equilib-
rium for the ideal gas as written in our units, the effective equilibrium
constant for a particular reaction in the ideal gas approximation is given by
K:ff - Ki (TITO) ! {pfpol-mi and so increases with density for those reactions
in which a net decrease in the numbey of particles results in the production,
from the reference species, of the species associated with the reaction., Such

a8 reaction, for example, 1s

KO=N +50

vhere two molecules are produced for every three which react. On the other
hand, a reaction for which there is a net increase in particles has an equilib-

rium constant which decreases with density. An example is

where two oxygen atoms are produced for each molecule of molecular oxygen. The
net result of this combination of enhanced effective equilibrium constant with
density for reactions in which the number of particles is decreased and decreas-
ed effective equilibrium constant with density for those in which it 1s increas-
ed 18 to produce a decrease in the total number of particles with density - a
result which is clearly visible in Table 3,

With very few exceptions (e.g. some of the ioniec species) all virial
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coefficlents are expected to be positive at the temperatures ;f interest (and,

in fact,leven at much lower temperatures)., It is for this reasom that the HS

model is expected to be particularly appropriate here.' Because of this positive ﬂ%&
behavicr, at these temperatures density corrections to the'equation of atate E%E?
myst be positive at all densities and are required to increase with density,

Any approximation which has this character must therefore produce a density

correction to the ideal gas which has the correct sign, if not the proper

magnitude. The simplest such correction is associated with taking only the

second virial coefficient. According to Table 3, such an approximation does

Produce an increase In compressibility factor with deneity for the intermolecular

potential functioms used here since these produce positive second virial

coefficients. The decrease In the magnitude of this correction with increasing

Ltemperature at constant density is caused by a reduction with increasing temp-

€rature In the magnitude of the second virial coefficient for meny of the inter-

actions used since the temperatures of intereét are azbove those at which the

second virial coefficients for these interactions exhibit maxima.

The GB approximation 1s strongly dependent on our second virial coeffi-
clents, gince those authors mede use of our earlier results for the second
virial gas to tie down their extrapolationa at 5000 and 6000 kelvins. For this
Teason, their predictions should be in cleose agreement with the results for the
second virizl gas up to the densities at which that approximation is expected
to be valid or to demsities somewhat below 100 amagats. This is essentially
the behavior exhibited in Table 3, Since the GB model is based on the results
of our second virial approximation, this.agreement iz not z test of the GB model
but rather serves as a test of the computer program developed by those authors
as well as of our own and as a test of the GB input date as obtained from our
virials. Since their approximation includes an estimate for the effect of third
virial coefficients and since the HS approximation does also, and since both of
these are of the same.sign, the predictions of the GB calculation should be
expected to agree with results for the HS model to slightly higher densities
than the pecond virial gas (and this is also exhibited in Table 3).

Qur present results are entirely compatible with the predictions of the

second virial gas. This is mo more than expected since both calculations were

based on the same second virial coefficients and since our model reduces
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exactly to the second virial gas in the limit of low density when all but
linear denaity terms are neglected,

2
Lt

)

15;

Ag the denpity increases beyond approximately 100 amagats, our results for
the HS model begin to deviate very rapidly frem the second virial results,
becoming over twice as large at a density of 1000 times normal. It should be
noted that there is a similar relationship between the results for the GB
approximation and those for the second virial gas except that since those two
appreoaches involve very similar approximations, differences between their
" results are considerably smaller than between the HS and second virial
approaches, eppeclally at the highest densities.

c. SUGGESTED POSSIBILITIES-FOR IMPROVEMENTS IN THE TABLES.

As mentioned above, a number of approximations were made in order to
expedite the completion of these calculations., These approximations were
conaldered to be sufficiently minor so as not to affect a gtudy of the effect
of density corrections on the concentrations and of the feasibility of carrying
out such calculations. Because of the nature of the calculation and because of
the applicability of Le Chatelier's principle, most of the approximations should
not be expected to affect the accuracy of the compressibility factors drastic-
elly, In this section we ghall describe ways in which these approximations
might be relaxed in order to produce more accurate tsbles, Please nota that
the order ir which the approximations are discussed 1s not necessarily related
to the order of their importance.

In this calculation we include only the compreasibility factor from smong
the thermodynamic properties, Thermodynamic properties can be obtained either
through numerical operations en our tables of compressibility factors or
through direct calculation of the properties from the equations given in the
text. For some of the properties, such direct calculations require a2 knowledge
of the temperature derivatives of the tempersture dependent parameters assoclat-
ed with the effective potential function, i.e. b(T) and (T}, perticularly the
firgt, This, in turn, requires an improvement in the method used for the cal-
culation of the hard sphere diameters for temperatures above that at which the

gecond virial coefficient attains its maximum, While the method ueed by us
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produces a relatively trivial discontinuity in the value of b(T) at the change-
over temperature, it does produce a discontinuity in its temperature derivative
which is much larger. It is clearly possible that these discontinuities in the
values of __1] will also be reflected in dZ/dT values obtained in a numerical
differentiation. Hence, even though it might be possible to neglect the temp-
erature derivative of b(T) as being small, it is probably very necessary to
lmprove on the method of calculating b(T) at high temperatures to ensure that
spurious discontinuities in alope are not introduced,

There are a number of methods which could be used for the calculation of
b(T) for temperatures above that at which the second virial attains a maxirmum
and these should be investigated. Since the effect of attraction can be
totally neglected at these temperatures, the most promising method might be ome
in which the problem of finding the two parameters b(T) and e(T) at each temp~-
erature is replaced by that of obtaining b(T) only, The present method
essentially does this but in a very arbitrary manner, and must be modified so
as to produce a smooth table of values for db/dT.

An obvious improvement in the tables will alsc result when the inter—
molecular potentials used by us are replaced by improved ones. The most
ilmportant of these have already been determined by us in earlier work under
this contract. In an earlier report, we estimated the possible effect of this
on calculated tables. Although the effect was shown to be considerably smaller
than were the substantial differences reported here between our results and those
of the GB model, they were nevertheless found to be not negligible, Such a
study needs to be made within the context of the HS theory, it being otherwise
impossible to place meaningful estimates of precision on our results. For the
second virial coefficient alcne, the ratic of the value predicted for the (18,5)
potential €o that predicted for the (12,6) at a temperature of 5000° when the
value at 500° 1s correctly predictea by both, is given approximately by

»!.,

= (10)

(sooo \1
500 /
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for a difference of approximately 14%Z.

Those properties which depend on db/4T would probably only be modified
8lightly by changing the potentials since db/dT is small for almost all
Potentials at the temperatures of interest. In ocur earlier r'eportz7 this wase
Ehown to be true for the first density corrections to such properties.

Improvement of the tables through the improvement of certain of the inter-
molecular potentials used (e.g. palr interactions involving Noz) would take
comsiderable additional effort., This would require a literature search for
experimental data for second virial coefficients and viscosity data for the
relevant species and the determination of parameters for intermolecular forces
using such data.

Related to this but somewhat broader in scope is.the need for a detalled
study of mixing rules by means of which potential functions which describe the
interactions between unlike speciles are inferred from those which describe the
interactions between like species. This is particularly important for such
pailrs as N,- NO which are major constituents iunder the conditions of interest.

One of the unexpected problems which we met in this work had to do with
the need for having enough interaction virials for the description of the inter-
actions between a given major species and other important species, Because the
net effect of these interactions on the equilibrium constant generally appears
as a smaller difference between larger quantities, such quantities cannot be
arbltrarily neglected. We solved this problem partly by a shift to other
reference species and partly by arbitrary approximation of the unknowm inter—
actions. A study needs to be made to establish a criterion for determining
when such interactions can be neglected. The Importance of this can be seen
from the sheer number of posaible interactions which can be needed in a cal-
culation of this kind. Thue, in a mixture of n constituents there are
n(n+l)/2 pair interactions, A mixture of 30 species therefore has 465 poseible
pair interactions!! The determination of these would constitute a tremendous
job made particularly difficult in our case by the facts that data are not
available for the appropriate binary mixtures (since many of these species can-
not be handled at ordinary temperatures while other species are not available

49
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in more than trivial concentrations at equilibriym at such temperatures). This
is, for example, true of the atomic species. Another major problem comes from
the fact that of the 465 pairs, 435 involve interactions between unlike species,
The possibility of there being data om the 435 binary mixtures needed at a
sufficient number of temperatures and for a sufficlent number of relative
concentrations from which to infer potentials of interaction is extremely small,
Thus, many of the interactions need to be estimated by whatever means 1s
available. Clearly, any reduction in the number of pair interactions needed
and in the accuracy with which the remaining ones are needed produces a
comparable direct reduction in the amount of work involved in calculations of
this kind. Thus, criteria need to be established, within the framework of our

model, by means of which it can be determined when a particular pair inter-
action can be neglected and when & pair interaction contributes sufficiently
little so that it can be approximated in a rather cavalier fashiom.
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Table 1. Q% Values for the (12,6) Hard Core Porential %"
3
Q* T Q* T* Q* @ﬂ,ﬂ
-0.60070 3.5 -0.02795 8.4 1.38388
-0.59951 3.6 -0.00024 8.8 1,50111
~0.59705 3.7 0.02759 9.0 1.55976
~0,57737 3.8 0.05550 9.2 1.61844
~0.56310 3.9 0.08351 9.4 1.67715
-0.54667 4.0 0.11159 9.6 1.73588
~0.52851 bk 0.22464 9.8 1.79463
-0.50893 4.6 0.28153 10.0  1.85341
~0.58818 4.8 0.33861 11.0  2.14753
~0.46656 5.0 0,39587 11.5  2.29474
~0.44389 5.2 0.45328 12,0 2.44202
~0.42062 5.4 0.51083 12.5 2.58939
~0.39675 5.6 0.56850 13.0  2.73679
~0.37236 5.8 0.62629 13.5  2.88426
-0.34751 6.0 0.68417 14.0  3.03178
~0.32226 6.2 0.74214 16.5 3.17934
~0.29666 6.4 0.80019 15.0  3.32694
~0.27075 6.6 0.85832 15.5  3.47458
~0,24456 6.8 0.91651 16.0  3.62225
~0,21812 7.0 0.97476 16.5 3.7699
-0,19147 7.2 1.03307 17.0  3.91767
~0.16461 7.4 1.09143 17.5  4.06542
-0.13758 7.6 1.14984 18,0 4.21319
-0.11038 7.8 1.20829 18.5  4.36098
~0.08304 8.0 1.20829 19.0  4,50879
~0.05556 8.2 1.32532 19.5  4.65661
20.0  4.80446
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Table 2: Yi Values for Several Densities for Representative Specias

log o/py

Species 0.0 1.0 2.0 2,4 2.8 2.9 2.95 3.0

C 0,9978 0.9784 0.7869 0.4965 0.0598 0,0083 0.0015 0.0001
0 0.9992 0.9923 0.9268 0.835)3 0.6900 0.6297 0.5904 0.5278
N 0.9991 0.9912 0,9163 0.8111 0.6365 0.5715 0.5338 0.4824
0 1.0000 1,0000 1.0000 1.0000 1.0000 1,0000 1.0000 1.0000
Not 1.0000 1.0000 1.0000 1.0000 1,0000 1.0000 1,0000 1.0000
N20 1.0001 1.0016 1.0575 1.4128 19,4924 383.1603  5879.5 43450,

N02 1.0000 1.0005 1.0445 1.3580 16.2103 278.0573  3786.1 221998,

CO2 1.0000 1.0000 1,0000 1,0000 1.0000 1.0000 1.0000 1.0000
co 0.9989 0.9886 0.8959 0.7808 0,6912 0.7177 0.7651 0.8457
NO 0.9999 0. 9997 1.0225 1,2001 5.6625 32.0525 156.53 1803.98

¢ s
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Table 3, Comparisons of the Compressibility Pactors, PV/RT for Alr
for Four Approximations (Including that of Grabau and Brahinsky)
as Functions of Density at Various Temperatures

T = 3000 K T = 6000 K

log plp,, . elo, Ideal  2nd Vir, H.S. GB Ideal 2ud Vir. H.S, GB

0.0 1.000 1.00716 1.00860 1.00860 1.00860 1.19771  1,19933  1,19932 1,19931
1.00 10.000 1,00216 1,01657 1,01670 1.01671 1.12652 1.14152 1.14167 1,14165
2,00 100.000 1.00026 1.14431 1,15822 1,15971 1.05716 1,19883 1,21259 1.21076
2.20 158,489 0,99999 1.22827 1.26474 1,26702 1.04694 1,26982 1,30521 1,29973
2,40 251.189 0.99971 1.36150 1.45984 1.45689 1,03811 1.38913 1.48281 1.41913
2.60 398.107 0.99943 1,57279 1.85170 1.83684 1,03055 1,58387 1,84433 1.73683
2.80 630.957 0.99911 1.90779 2.78587 2.61764 1.02411 1,89703 2.68901 2.36473
3,00 1000.000 0.99875 2.43885 5.86038 4.39136 1.01863 2.39685 5.29604 3.59066

wi

S8-9L-41-043VY



12

log pfe, p/p

MMM MMMMOMPPNMNREREREOD
M
SDCWLRHOIrPNOLOUV D
CWwWOoOWMoD oo oo

WhRMNMMMMNMRNMNMNNE DD
-

UL ORENOLOND

QUOWOCOoOOoOoOoOOLO

[+]

1.000
3.162
10,000
31,623
100,000
158.489
251.189
398.107
630.957
707.946
794,328
891.251
1000,000

1.000
3,162
10.000
31.623

100.900
158,489
251,189
398.107
630.957
707.946
794,328
891.251
1000, 000

Compressibility Factors, PV/RT, for Alr for Three Approximations as Functions
of Density at Various Tempetratures

Table &,

T = 2000 K
Ideal 2nd Vir.
1.00003 1,00147
0.99999% 1.00453
0.999%5 1.01429
0.99989 1,04522
0.99980 1.14313
0.99974 1.22692
0.99968 1.35972
0.99959 1.,57022
0.99948 1.90387
0.99945 2,01418
0.99941 2,13797
0,99938 2,27685
0.99934 2.43269

T = 5000 K
1.14410 1.14566
1,10701 1.11176
1.07208 1.0Bb69
1.04503 1,09036
1.02654 1.16822
1.02112 1,24492
1.01660 1,37031
1.01280 1.57208
1.00959 1,89425
1.00887 2,00103
1.00817 2.12093
1,00749  2.25554
1.00684  2,40665

H.S.

1.00147
1,00454
1,01443
1.04668
1,15847
1.26722
1.46876
1.88108
2.88947
3.38046
4.10655
5.16701
6.74005

1,14566
1.11178
1.08683
1.09171
1.181%0
1,28043
1.46520
1,83911
2.72389
3.12882
3.67196
4,42148
3.48858

T - 3000 K
Ideal 2nd Vir.-
1.00716 1.00860
1.00400 1.00856
1.00216 1.01657
1,00103 1.04660
1.00026 1.14431
0.99999 1,22827
0.99971 1.36150
0.99943 1.57279
0.99911 1.%0779
0,99902 2.01857
0.99894 2,14287
0.99884 2.28235
0.99875 2.43885

T = 6000 K
1.19771  1.,19933
1.16425 1.16918
1.12652 1.14152
1.08877 1.13467
1.05716 1.19883
1.04694 1.26982
1.03811 1,38913
1.03055 1.58387
1.02411 1.89703
1.02266 2.00108
1,02127 2.11800
1.01992 2,24934%
1.01863 2,39685

H.5.

1.00860
1,00858
1.01670
1,04793
1.15822
1.26474
1.45984
1.85170
2.78587
3.22655
3.83243
4.67103
5.86038

1.19932
1.16919
1.14167
1.13605
1.21259
1,30521
1.48281
1.84433
2,68901
3.07032
3.58090
4.28637
5.29604

T = 4000 X
Ideal 2nd Vir.
1.06259 1.06406
1.03838 1.04297
1.,02258 1.03697
1.01282 1.05808
1.00689 1.14954
1.00519 1,23109
1.00376 1.36152
1.00252 1.569138
1.00141 1.89904
1.00114 2.00819
1.00088 2,13068
1.00063 2,26815
1.00037  2.42241

T= 7000 K
1.26975 1.27145
1,21977 1.22481
1.17562 1.19096
1.13236 1.17900
1.09191 1,23433
1.07758 1.30063
1.06464 1.41441
1.05317 1.60231
1.04315 1.9062%9
1.04086 2.00750
1.03865 2.12127
1.03653 2.24934
1.03448 2.39279

H.5.

1.06406
1.04299
1.03710
1.05940
1.16327
1.26696
1.45801
1.84263
2.76067
3.18815
3.76453
3,76453
5.67075

1.27142
1.22482
1.19111
1.18043
1.24822
1,33603
1,50716
1.85660
2.66258
3,02267
3,50419
4.28637
5.12396
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Table 4. Cowpresgibiliry Factors, PV/RT, for Air for Three Approximations as Functions
of Denoity at Various Temperatures (Continued}

§S

T = 8000 K T = 9000 K T = 10000 K
log pfpo olno Ideal 2nd Vir. H.S. Ideal 2nd Vir, H,S, Ideal 2nd vir, H.S.
0.0 1,000 1.39887  1.40073  1.40067 1.57870 1.58092 1.58081 1.75557 1.75831 1.75824
0.50 3.162 1,30590 1.31111 1.31113 1.43559 1.44113 1.44115 1.59299  1.59914  1.59917
1.00 10.000 1,23653 1.25221 1.253238 1.32462 1,34084  1.34103 1.44170  1.4588&  1.45907
1.50 31.623 1,17952 1.22691 1,22840 1.24034 1.28868 1.29031 1.32093 1,37070 1,37253
2.00 100.000 1.12922 1,27275 1.28692 1.,17308 1.31801 1.33279 1.22803 1.37491 1.39075
2.20 158.489 1.11104 1,33491  1.37064 1,14966 1.37478 1.41150 1.19695 1.4238%  1,46246
2,40 251,189 1.09423 1.44376 1.53628 1.12811 1.47801 1.57167 1.16880 1.51948 1.6l1621
2.60 398,107 1.07895 1.62527 1.87516 1.10846 1.65256 1.90147 1.14341 1.68489 1.93760
2.80 630,957 1.06530 1,92006 2.64817 1.09075 1.93623 2,64864 1.12063 2.66597
2.85 707.946 1.06214 2,01822 2.99064 1.08663 2.02946 2.97754 1.11534 2.98550
2.90 794,328 1.05909 2,12851 3.44787 1.08263 3.4159%0 1.11021 3.41076
2.95 891.251 1,05613 2,25225 4,07983 1.07875 4.02162 1.10522 3.99831
3.00 1000.000 1.05327 2.3906% 4.98634 1.07500 4,.89104 1.10040 4,84254
T = 11000 K T = 12000 K T = 13000 K

0.0 1,000 1.88065 1,8B8393 1.88443 1.95523 1.95864 1.95864 2.00423 2.00857 2.00857
0.50 3.162 1.74179 1.74884  1.74889 1.85446 1.86238 1.86242 1.92978 1.93876 1,93B80
1.00 10.000 1.57443 1.5%300 1.59327 1.70139 1.72172 1.72205 1,80573 1.82806 1.82842
1.50 31,623 1.41996 1,47187 1,47400 1.52904 1.58386 1.38635 1.63623 1.69460 1.69746
2,00 100,000 1.29616 1.44580 1.46322 1.37588 1.52919%  1.54866 1.46252 1.62015 1.64206
2.20 158.4489 1.25511 1.48445 1.52602 1.32372 1.55620 1.601&0 1,39995 1.63541  1.68573
2,40 251.189 1.21833 1.56995 1.6719¢ 1.27688 1.62873 1.73815 1.34289 1.69073 1.80986
2.60 398.107 1.18548 1.72117 1,98433 1.23514 1.73950 2.03625

z.80 630,957 1.15627 2,70028 1.19818 2.74512

2.85 707.946 1.14951 3.01484 1,18964 31.06156

.90 794.328 1.14295 3.43301 1.18138 3.47979

2.95 891.251 1,13660 4,01070 1.17339 4.05639

3.00 1000,000 1.13045 §.84201 1.16566 4,88690
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10 100
T*

REDUCED VIRIAL COEFFICIENTS BN' VS REDUCED TEMPERATURE T". THE MAXIMA TEND
TO LOWER TEMPERATURES WITH INCREASING N. SUPPORTING THE ARGUMENT MADE IN THE
TEXT THAT. EXCEPT AT LOW TEMPERATURES, THE HIGHER VIRIALS ARE REPRESENTABLE
BY HARD-SPHERE INTERACTIONS WITHOUT ATTRACTION.
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F16. 2. EFFECTIVE POTENTIALS VS MDLECULAR SEPARATION IN ARBITRARY UNITS FOR SEVERAL
VALUES OF M AND FOR T" = 2,5, [T IS SEEN THAT THOUGH THE SHAPE OF THE "BOWL"
IS QUITE SENSITIVE TO THE CHARACTERISTIC PARAMETER M, THE SPHERE DIAMETER AT
THIS TEMPERATURE IS ONLY WEAKLY SEWSITIVE TO IT.
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SPHERE SIZE vs T*

.O

F16. 3, THE SPHERE DIAMETER IN REDUCED UNITS
VS REDUCED TEMPERATURE FOR EFFECTIVE POTENTIALS
WITH M9 AND M=10 AND FOR THE ZBH THEORY.
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ARGON
T=119.8K

O .2 4 (3} .8
P-K-
Fi16, 4. COMPRESSIBILITY FACTOR FOR ARGON VS REDUCED DENSITY o(e?) = o FoR

T=119.85 Curves 1, ™IS work: CURVES 2 AND 4, ZB} THEORY FroM
REFERENCES 22 AND 25, RESPECTIVELY: Cﬁs 3. IBH THEORY BASED ON MONTE

CAH.Q7CALCULATIOI15 OF PERTURBATION : Curves 5, PVT ExPERIMENTAL
DATA™, Tie "COMPUTER EXPERIMENTS" " ARE DESIGNATED BY CIRCLES, MONTE
CARLO: AND SQUARES, MOLECULAR DYNAMICS.
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2.5 2.4

ARGON
T=16l.7K

2.0

1.5

1.0

0.5

LA - []
ON| ! | |
Fi6, 5. COMPRESSIBILITY FACTOR VS DENSITY FOR

ARGON FOR T = 161.7K: see capTion. FiG. 4.
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1 | I ] I I

ARGON
3 T=239.6K

2.0

1.5

1.0

Fic, 6. COMPRESSIBILITY FACTOR VS DENSITY FOR
ARGON FOR T = 239,6K: SEE capTIoN, FiG. 4.
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4.0

3.0

2.0

1.0

AEDC-TR-78-88

| | | I %j@
ARGON
328.25K

F1G. 7. CoMPRESSIBILITY FACTOR VS DENSITY FOR
ArGow FOR T = 328,25K; see caprion, Fig. 4,
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Fie, 8, COMPRESSIBILITY FACTOR VS DENSITY FOR

ARGON FOR T = 3/3: SEE cAPTION, FIG. 4,
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3.0

1.0
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ARGON
T= 673K

.6

Pi

Fi6, 9, COMPRESSIBILITY FACTOR VS DENSITY FOR
ARGON FOR T = 673K: SEe capTIoN, Fig, 4,
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5.0

4.0

3.0

y4

2.0

1.0

O

| | |
~ ARGON
_ T=239.6K .
| | ] I
O 200 400 600 800

p (Amagat)

Fie. 10. SeNSITIVITY OF EQUATION OF STATE FOR ZBH THEORY TO CHOICE OF POTENTIAL

FUNCTION. COMPRESSIBILITY FACTOR IS PLOTTED VS DENSITY IN AMAGAT., FOR
CuRVE 1, THE REFERENCE POTENTIAL IS THE LEnnARD-Jones (18.6): For CURVE 2.
THE LEnnNARD-JoNes (12,§). THE WUMERICAL RESULTS ARE FROM CALCULATIONS
FURNISHED BY TOXVA USING POTENTIAL PARAMETERS ¢/K = 119,58, o = 3,405
FOR THE LATTEF AND EQUATION (12) FOR THE FORMER.
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| | | |

4.0~ ARGON ]
T=239.6 K |

3.0 -
2

20} _

| O —

0 | | | |

O

Fie, 11,

200 400 600 800
p (Amagat)

SENSITIVITY OF PRESENT THEORY TO CHOICE OF POTENTIAL FUNCTIONS, POTENTIAL
FUNCTIONS ARE AS DESCRIBED IN CAPTION FOR F16, 10, THE SMALL DIFFERENCE
BETWEEN CURVES 1 AND 2 IS MOSTLY DUE TO THE SLIGHT DIFFERENCES IN SECOND
VIRIALS PRODUCED BY THE TWO POTENTIALS IN THE VICINITY OF THE ISOTHERM,
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"
5
I | I I ] I | |
NITROGEN 2l
- T =123.15K }

3.0

1 | |
400 600 800
p(Amagat)
Fia, 12, CoMPRESSIBILITY FACTOR VS DENSITY IN
AMAGAT FOR NITROGEW T = 123,15K, Cumves 1.
PRESENT meomgs CURVES 2. EXPERIMENTAL PVT

MEASUREMENTS.,
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NITROGEN
T=173.15K ]

| | | |
O 200 400 600 800
p(Amagat)

Fi6, 13, (oMPRESSIBILITY FACTOR VS DENSITY IN
AMAGAT FOR NITROGEN T = 173,13 SEE CAPTION,
Fie, 12,
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B NITROGEN -
T=273.15K >
S.0F —
1.0 -
| I I | | | 1
O 200 400 600 800

p (Amagat)

Fic, 14, COMPRESSIBILITY FACTOR VS DENSITY IN
AMAGAT FOR NITROGEN T = 273.15K: SEE CAPTION,
Fie, 12.
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NITROGEN
T=673K

1 [ | |
200 400 600 800
p (Amagat)

F16, 15, COMPRESSIBILITY FACTOR VS DENSITY IN
AMAGAT FOR NITROGEN T = B73K: SEE CAPTION.
Fi16, 12.
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MOLE FRACTION
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T= 3000 K
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15 1.75 2.0 225 . 25 2.75 3.0
Log (P/Ay)

FiG, 16, CONCENTRATION VERSUS DENSITY FOR
SEVERAL. IMPORTANT SPECIES For T = 3000K,

74

&>



MOLE FRACTION

AEDC-TR-76-85

1.0 I I I | i
Nz e — — -—:
0
107!
02
/)
)
o '
- o
co =7 e -
r
= 'ﬁ,ﬂ
4] _
10 — — - IDEAL
REAL
T= 9000 K
e
co, —
0-5 | | | m
15 1.75 2.0 2.25 2.5 2.15% 3.0
Log (P/R,)

Fi16, 17, CONCENTRATION VERSUS DENSITY FOR
SEVERAL IMPORTANT SPECIES FoR T = 900K,
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